

LAB

What's new v5.13

Optimizer enhancements

Optimizer enhancements

LAB has received some new optimizer modes to allow a more efficient and less time-consuming optimization.

- Multi-Level Single-Linkage (MLSL) + Subplex
- NLopt

In addition to the new models also some enhancements have been made to improve the user experience of the Calibration module.

- Update Optimizer Start Parameters
- Safety Measures for Calibration Crashes

New Optimization Method MLSL + Subplex

- Until now optimization used only the "Differential Evolution" optimizer algorithm, the superior "MLSL + Subplex" optimization method has been implemented into the *Calibration* and *Optimizer* Modules and is now the default setting
- MLSL + Subplex Optimizer is a Multi-Start optimization strategy that combines:
 - MLSL: Multi-Level Single-Linkage a global optimization algorithm
 - Subplex: a derivative-free local optimization algorithm

New Optimization Method MLSL + Subplex

- Multi-Start MLSL algorithm performs global optimization by sampling start points in the search space, clustering nearby points, merging close clusters then runs a local optimizer (Subplex) from a promising point in each cluster.
- Key Features:
 - Global optimizer
 - o Once a good start point is found ("semi-random process"), local optimization runs fast

The optimizer uses MLSL + Subplex by default

NLopt Optimization Methods

- Other NLopt (nonlinear optimization library) optimization methods are also added to the *Calibration* and *Optimizer Modules*.
- Based on testing, MLSL + Subplex was chosen as the default due to its speed and performance, though other methods can still be enabled
- Optimizer selection can be enabled in Properties under Flow/Module
- A drop-down of available methods is shown in the optimizer model

Update Optimizer Start Parameters

Started at Thu Apr 10 17:28:36 2025

Current Time: Thu Apr 10

 In the Calibration module the optimized parameters from the calibration results will be updated in the start values in the Optimizer

FEM 1 < add>

v Defocus v

[um]

0.5

0.45

0.35

0.3

Create Empty

Measurement Height [um] 0.038

[um]

0.13282

0.12535

Import Data ...

0.11888

0.115046

0.11334

0.109473

Export Data.

Resist Calibration

Settings Label/Comment

Projection...

Resist...

Optimizer...

Ensure Clearing

Result View...

Save Material..

Update StartVals

Verification

Verification

Calibration

"Update StarVals"

0.2

0.081425

0.084656

0.086876

0.08815

0.090176

0.096803

0.095936

0.097156

0.09833

0.098656

Update Optimizer Start Parameters

- 2. In *Optimizer* module :
 - "Update Start Params From Fit": to automatically update start values in the optimizer

Safety Measures for Calibration Crashes

If LAB crashes while the calibration is running:

1- Open LAB again

2- Load the recover flow

Safety Measures for Calibration Crashes

- 3- Right-click on the calibration model
- 4- Choose "Optimizer Results"

5- The window shows you the last optimized parameters before crashing

Image Information Export

Image Information Export

When exporting a plot as a PNG file, the export dialog now offers check boxes
where the visibility of the plot title, legend, axes, and cut-line can be adjusted for
the export without affecting the plot window

Intensity subtraction between two simulations

Intensity subtraction between two simulations

- In the result tree, there is a new button "Show Delta Image" to compare two image results, it supports:
 - ∘ Cut views XY, XZ, YZ and CZ

1- Select the subtracted image

2- Select the second result and press the "Delta"

3- The Intensity subtraction results will be displayed

Model OPC Improvement

User-defined Intensity Threshold

• User can specify the target intensity threshold [mJ/cm²] in the resist for the model OPC correction. The intensity threshold was previously assumed to be

 0.5 mJ/cm^2 .

Python API

LAB object method: LAB.e_beam()

- LAB.e_beam() is a method for performing E-Beam simulations
- It contains all the E-Beam parameters as a Python dictionary (not all shown here)

```
EBeamResults = LAB.e_beam(InputLayout,

{'StackEntries' : [['Tesist', 'PMMA350k'
'ResistStack' : [],
'BaseDose' : 260,
```

The InputLayout is the result of the previous LAB.import_gds() function

LAB object method: LAB.get_measure_value()

• The LAB.get_measure_value() method returns lithography line-based measurements, such as CD, NILS, Intensity Contras, etc.

Example: returning the line CD at the center of the stack

LAB object method: LAB.get_measure_value()

• The LAB.get_measure_value() method returns lithography corner-based measurements, such as Corner Radius and Mean Radius of All Corners.

Example: returning the corner radius at the center of the stack

```
# Corner measurements can be perforumed for ("Top", 'Center', 'Bottom')
C1CenterRadius = LAB.get_measure_value(EBeamResults, "Corner Radius", "Center", "C1")
print(C1CenterRadius)

The EBeamResults is the output of the previous LAB.e beam() method

Metrology corner name
```

Example: returning the Mean Radius of All Corners at the bottom of the stack

```
# Additional corner measurement if more than one corner is to be measured, for ("Top", 'Center', 'Bottom')

CornerMeanBottomRadius = LAB.get_measure_value(EBeamResults, "Corner Radius", "Bottom", "Mean Radius of All Corners")

print(CornerMeanBottomRadius)
```


Thank You!

support@genisys-gmbh.com

Headquarters

GenISys GmbH Eschenstr. 66 D-82024/Taufkirchen (Munich) **GERMANY**

1 +49-(0)89-3309197-60

±49-(0)89-3309197-61

⊠ info@genisys-gmbh.com

USA Office

GenISys Inc. P.O. Box 410956 San Francisco, CA 94141-0956 USA

1 +1 (408) 353-3951

□ usa@genisys-gmbh.com

Japan / Asia Pacific Office

GenISys K.K. German Industry Park 1-18-2 Hakusan Midori-ku Yokohama 226-0006 JAPAN

1 +81 (0)45-530-3306

= +81 (0)45-532-6933

□ apsales@genisys-gmbh.com